为什么说持续学习才是AI的关键?

393
2022-05-28
持续学习也是深度学习,是学到一个策略解决智能体与环境间互动问题的重要学习范式。不过以往的深度学习过程都常常很低效,在复杂环境中往往难以收敛。这一方面由于简单的策略难以完善、细致地描述各种不同环境状态下的不同行为,另一方面也有由于可能的行为的组合太多所以要探索的空间太大了...
持续学习也是深度学习,是学到一个策略解决智能体与环境间互动问题的重要学习范式。不过以往的深度学习过程都常常很低效,在复杂环境中往往难以收敛。这一方面由于简单的策略难以完善、细致地描述各种不同环境状态下的不同行为,另一方面也有由于可能的行为的组合太多所以要探索的空间太大了。
人类应对复杂问题的方法是把它们分解成一系列小的、可控的步骤。比如“做馅饼”就是由一系列高级别的行为组成的,取面粉、打鸡蛋、摊在平底锅内、设定烤箱等等。人类能够快速学到新任务,靠的就是把已经学过的步骤组合起来,即便每个步骤都可能需要百万个低级别的行动组成,像让不同的肌肉做不同的动作这样。
然而,当前的深度学习算法的运行方式都是在低层次的行动中做暴力搜索,解决新问题的时候需要大量的尝试。对于那些需要依次执行很多个步骤的任务来说,这种搜索方法的效率就会变得非常低。
因此,人工智能的持续学习简明的说就是在进行任务时能够走捷径。